SCIENCE IN SOCIETY:

"Discrimination, Segregation, and Chronic Inflammation: Testing the Weathering Explanation for the Poor Health of Black Americans" (Simons et al. 2018)

CONTEXT

- Black Americans have a greater prevalence of chronic illness and a significantly lower life expectancy than other ethnic groups
 - Black adults are 50% more likely to have a stroke than white adults
 - Black adults are 40% more likely to have high blood pressure than white adults
 - Black adults are 20% more likely to die from heart disease than white adults
- Current health interventions involve improving socioeconomic status or health risk behaviors in Black populations to improve health outcomes, but middle and upper-class Black Americans still have high rates of chronic illness and disability
- While these strategies have been shown to improve the health outcomes of some populations, they do not eliminate health disparities faced by Black populations

Source: US Department of Health and Human Services Office of Minority Health. Profile: Black/African Americans 2019. <u>https://minorityhealth.hhs.gov/omh/browse.aspx?lvl=3&lvlid=61</u>

DEFINITIONS:

- Health Disparities: Preventable differences in the burden of disease injury, violence, or opportunities to achieve optimal health that are experienced by socially disadvantaged populations
- Health Inequity: Differences in the burden of disease, injury, violence, or opportunities to achieve optimal health that are unnecessary, avoidable, and unfair
- Weathering Hypothesis: "The elevated rates of illness and disability seen among Black Americans is a physiological response to the structural barriers and daily slights, stereotypes, and other threats to one's identity that comprise the Black experience"
- The PAR Model: Early adolescence is a sensitive period, during which cognitive and biological systems are programmed to prepare the organism for their future environment.
- The Cumulative Stress Model: Individuals are at their greatest physiological risk when exposed to chronic or cumulative stress across a lifetime.
- The Stress Generation Model: The more immediate stress levels in previous months or years are the best predictors of physiological stress.

OVERVIEW

- Currently used "health risk factors" are inaccurate when addressing health disparities observed in Black populations
 - Socioeconomic status and even changes in health risk behaviors such as smoking and diet do not attribute to the large distribution gap of chronic illness between races
- Exposure to racism, discrimination, and segregation may be a stronger contributor to poor health outcomes in Black populations
 - In this study, chronic inflammation is used as an indicator for health outcomes
- Used data from the Family and Community Health Study and performed longitudinal study: Started with a sample of 889 children in 5th grade, and followed the cohort in 7 waves until the age of 28, where 479 individuals remained to give blood.
- Included measurements of 14 cytokines

INITIAL THOUGHTS?

RESULTS

- After controlling for "health risk behaviors" and socioeconomic status, exposure to racial discrimination and/or racial segregation leads to an increased risk of chronic inflammation
- Alternatively, socioeconomic status showed no association with increased risk of chronic inflammation
- Exposure to racial discrimination and segregation in childhood showed the most significant risk. No exposure in childhood, with later exposure in adulthood showed no significant risk. If exposed in childhood, exposure in adulthood compounds risk.

Zero-Order Correlations between Racial Discrimination/Racial Segregation and Inflammation at each wave:

 Racial discrimination is significantly correlated with inflammation at every age

Racial segregation is significantly correlated with inflammation at every age

Researchers separated cohort waves into two group for further analysis: Waves I-3-Adolescents, Waves 4-6- Adults

Table 1

Correlations of Racial Discrimination/Racial Segregation and Inflammation (n = 409)

Racism variables	r	p value
Racial discrimination		
Age 10	.135	.006
Age 13	.163	.001
Age 15	.174	.000
Age 18	.109	.027
Age 21	.137	.006
Age 24	.158	.001
Racial segregation		
Age 10	.190	.000
Age 13	.189	.000
Age 15	.241	.000
Age 18	.159	.001
Age 21	.188	.000
Age 24	.202	.000

Correlations between Observed Variables and Inflammation:

Table 2 Correlations, Means, and Standard Deviations Among the Study Variables (n = 409)

Variable	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1. Inflammation	_														
Juvenile racial discrimination	.192**														
Adult racial discrimination	.158**	.576**													
Juvenile racial segregation	.219**	.279**	.289**	_											
Adult racial segregation	.199**	.240**	.251**	.866**											
6. Males	083^{+}	018	.150**	106^{*}	062										
Acute illness (age 28)	.121*	.199**	.255**	.253**	.243**	243^{**}	_								
8. Education (age 28)	.045	008	.037	.099*	.116*	066	.064								
9. Income (age 28)	.050	041	.052	041	013	.100*	.037	.245**	_						
10. Married or cohabiting (age 28)	.065	061	.002	.054	.062	.007	.041	.076	.172**						
11. Health insurance (age 28)	.070	012	016	.070	.087†	120^{*}	.156**	.211**	.141**	.057					
12. Healthy diet (ages 18-28)	.088 ⁺	.147**	.031	018	030	168^{**}	.037	.154**	043	.025	.092 ⁺	_			
13. Exercise (ages 18-28)	.097*	.186**	.181**	.089†	.094†	.292**	.007	.138**	.104*	021	.040	.254**	_		
14. Alcoholic drinks (ages 18-28)	.085†	.206**	.304**	.242**	.233**	.164**	.202**	.076	.113*	046	.042	091^{\dagger}	.045	_	
15. Cigarette use (ages 18-28)	.046	.189**	.200**	.148**	.123*	.077	.072	295^{**}	086 [†]	064	060	114^{*}	.024	.333**	
M	3.737	21.474	21.268	.795	.802	.380	5.303	13.095	479.269	.259	.822	6.044	4.896	2.037	1.938
SD	.778	5.868	6.244	.179	.157	.486	6.404	1.755	509.659	.439	.383	1.650	1.433	.972	1.314

 $^{\dagger} p \leq .10. ^{*} p \leq .05. ^{**} p \leq .01$ (two-tailed tests).

Correlations between Observed Variables and Inflammation:

Table 2

Variable	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1. Inflammation	_							• Di	scriminatio	on and s	segregat	ion are b	oth co	rrelated	with
Juvenile racial discrimination	.192**							inf	lammation						
Adult racial discrimination	.158**	.576**	—		-				lannacion						
Juvenile racial segregation	.219**	.279**	.289**												
Adult racial segregation	.199**	.240**	.251**	.866**	—			• luv	venile discr	riminati	on and s	egregatio	on are o	correlate	d with
6. Males	083 ⁺	018	.150**	106^{*}	062				dult discrin	aination	and cor	rogation			
Acute illness (age 28)	.121*	.199**	.255**	.253**	.243**	243^{**}		A		ination	i and seg	gregation			
8. Education (age 28)	.045	008	.037	.099*	.116*	066	.064	_							
9. Income (age 28)	.050	041	.052	041	013	.100*	.037	.245**	_						
10. Married or cohabiting (age 28)	.065	061	.002	.054	.062	.007	.041	.076	.172**						
11. Health insurance (age 28)	.070	012	016	.070	.087 [†]	120^{*}	.156**	.211**	.141**	.057	_				
12. Healthy diet (ages 18-28)	.088	.147**	.031	018	030	168^{**}	.037	.154**	043	.025	.092 [†]				
13. Exercise (ages 18-28)	.097*	.186**	.181**	.089 [†]	.094†	.292**	.007	.138**	.104*	021	.040	.254**	_		
14. Alcoholic drinks (ages 18-28)	.085†	.206**	.304**	.242**	.233**	.164**	.202**	.076	.113*	046	.042	091^{\dagger}	.045	_	
15. Cigarette use (ages 18-28)	.046	.189**	.200**	.148**	.123*	.077	.072	295^{**}	086^{\dagger}	064	060	114^{*}	.024	.333**	_
М	3.737	21.474	21.268	.795	.802	.380	5.303	13.095	479.269	.259	.822	6.044	4.896	2.037	1.938
SD	.778	5.868	6.244	.179	.157	.486	6.404	1.755	509.659	.439	.383	1.650	1.433	.972	1.314

Correlations, Means, and Standard Deviations Among the Study Variables (n = 409)

 $^{\dagger} p \le .10. ^{*} p \le .05. ^{**} p \le .01$ (two-tailed tests).

Correlations between Observed Variables and Inflammation:

Table 2 Correlations, Means, and Standard Deviations Among the Study Variables (n = 409)

Variable	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1. Inflammation	_														
Juvenile racial discrimination	.192**														
Adult racial discrimination	.158**	.576**	_												
Juvenile racial segregation	.219**	.279**	.289**	_											
Adult racial segregation	.199**	.240**	.251**	.866**	_										
6. Males	083^{+}	018	.150**	106^{*}	062										
Acute illness (age 28)	.121*	.199**	.255**	.253**	.243**	243**	_								
8. Education (age 28)	.045	008	.037	.099*	.116*	066	.064								
9. Income (age 28)	.050	041	.052	041	013	.100*	.037	.245**							
10. Married or cohabiting (age 28)	.065	061	.002	.054	.062	.007	.041	.076	.172**						
11. Health insurance (age 28)	.070	012	016	.070	.087†	120^{*}	.156**	.211**	.141**	.057	_				
12. Healthy diet (ages 18-28)	.088 ⁺	.147**	.031	018	030	168^{**}	.037	.154**	043	.025	.092†				
13. Exercise (ages 18-28)	.097*	.186**	.181**	.089 [†]	.094†	.292**	.007	.138**	.104*	021	.040	.254**	_		
14. Alcoholic drinks (ages 18-28)	.085†	.206**	.304**	.242**	.233**	.164**	.202**	.076	.113*	046	.042	091^{\dagger}	.045	_	
15. Cigarette use (ages 18-28)	.046	.189**	.200**	.148**	.123*	.077	.072	295**	086^{\dagger}	064	060	114^{*}	.024	.333**	
М	3.737	21.474	21.268	.795	.802	.380	5.303	13.095	479.269	.259	.822	6.044	4.896	2.037	1.938
SD	.778	5.868	6.244	.179	.157	.486	6.404	1.755	509.659	.439	.383	1.650	1.433	.972	1.314

 $^{\dagger} p \leq .10. ^{*} p \leq .05. ^{**} p \leq .01$ (two-tailed tests).

Other variables commonly used as health interventions were not significantly correlated with inflammation

Juvenile discrimination/segregation impacts risk of adult inflammation:

Table 3

Regression Coefficients and Standard Errors for Racial Discrimination and Racial Segregation Regressed on Inflammation

			Racial discrimi	ination			Racial resident segregation						
	Model 1A		Model 1B		Model 10	2	Model 2A		Model 2B		Model 2C		
Predictors and controls	b	β	b	β	b	β	b	β	b	β	b	β	
Juvenile racial discrimination	.020 (.007)**	.154			.016 (.008)*	.121							
Adult racial discrimination			.016 (.007)*	.130	.008 (.008)	.064							
Juvenile racial segregation							.798 (.270)**	.182			.696 (.291)*	.154	
Adult racial segregation									.800 (.367)*	.162	.136 (.439)	.032	
Males	$158(.090)^{\dagger}$	099	$198(.091)^{*}$	124	$175(.091)^{\dagger}$	109	$118(.068)^{\dagger}$	081	137 (.066)*	092	$119(.067)^{\dagger}$	082	
Acute illness	.005 (.006)	.043	.004 (.007)	.035	.004 (.007)	.033	.005 (.003)	.037	.006 (.003) [†]	.039	.005 (.003)	.036	
Education (age 28)	001(.024)	001	003(.024)	007	001(.024)	003	009(.018)	021	008(.019)	021	009 (.018)	022	
Income (age 28)	.001 (.001)	.035	.001 (.001)	.028	.001 (.001)	.034	.001 (.001)	.048	.001 (.001)	.043	.001 (.001)	.048	
Married or cohabiting (age 28)	.124 (.088)	.070	.111 (.088)	.063	.120 (.088)	.068	.083 (.072)	.050	.086 (.071)	.051	.082 (.072)	.049	
Health insurance (age 28)	.076 (.103)	.037	.076 (.103)	.037	.080 (.103)	.039	.038 (.116)	.027	.033 (.115)	.025	.037 (.116)	.027	
Healthy diet (ages 18-28)	.014 (.025)	.029	.020 (.025)	.043	.014 (.025)	.030	.029 (.016) [†]	.062	.029 (.016)†	.062	.029 (.016)†	.063	
Exercise (ages 18-28)	.045 (.030)	.083	.051 (.030) [†]	.094	.044 (.030)	.082	.045 (.021)*	.084	.048 (.021)*	.089	.045 (.021)*	.084	
Alcoholic drinks (ages 18-28)	.042 (.044)	.052	.041 (.045)	.051	.036 (.045)	.045	.027 (.041)	.040	.033 (.042)	.047	.027 (.041)	.040	
Cigarette use (ages 18-28)	.009 (.033)	.015	.012 (.033)	.020	.007 (.033)	.012	.009 (.041)	.017	.012 (.040)	.022	.009 (.042)	.018	
Constant	2.806 (.358)**		2.901 (.355)**		2.775 (.360)**		2.678 (.377)**		2.650 (.413)**		2.655 (.403)**		
R-squared	.068		.061		.070		.075		.068		.075		

Note. Unstandardized (b) and standardized (β) coefficients shown with standard errors in parentheses; the standard error of racial segregation is adjusted for clustered at county-level (n = 52). N = 409.

 $^{\dagger} p \leq .10. ^{*} p \leq .05. ^{**} p \leq .01$ (two-tailed tests).

Juvenile discrimination/segregation impacts risk of adult inflammation:

Table 3

Regression Coefficients and Standard Errors for Racial Discrimination and Racial Segregation Regressed on Inflammation

			Racial discrimi	nation			Racial resident segregation								
	Model 1A	A	Model 11	Model 1B		С	Model 2A	1	Model 2	3	Model 20	С			
Predictors and controls	b	β	b	β	b	β	b	β	b	β	b	β			
Juvenile racial discrimination Adult racial discrimination	.020 (.007)**	.154	.016 (.007)*	.130	.016 (.008)* .008 (.008)	.121 .064									
Juvenile racial segregation							.798 (.270)**	.182			.696 (.291)*	.154			
Adult racial segregation									.800 (.367)*	.162	.136 (.439)	.032			
Males	158 (.090) ⁺	099	198 (.091)*	124	$175(.091)^{\dagger}$	109	118 (.068) ⁺	081	137 (.066)*	092	119 (.067) ⁺	082			
Acute illness	.005 (.006)	.043	.004 (.007)	.035	.004 (.007)	.033	.005 (.003)	.037	.006 (.003) [†]	.039	.005 (.003)	.036			
Education (age 28)	001(.024)	001	003(.024)	007	001(.024)	003	009 (.018)	021	008(.019)	021	009(.018)	022			
Income (age 28)	.001 (.001)	.035	.001 (.001)	.028	.001 (.001)	.034	.001 (.001)	.048	.001 (.001)	.043	.001 (.001)	.048			
Married or cohabiting (age 28)	.124 (.088)	.070	.111 (.088)	.063	.120 (.088)	.068	.083 (.072)	.050	.086 (.071)	.051	.082 (.072)	.049			
Health insurance (age 28)	.076 (.103)	.037	.076 (.103)	.037	.080 (.103)	.039	.038 (.116)	.027	.033 (.115)	.025	.037 (.116)	.027			
Healthy diet (ages 18-28)	.014 (.025)	.029	.020 (.025)	.043	.014 (.025)	.030	.029 (.016) [†]	.062	.029 (.016)†	.062	.029 (.016)†	.063			
Exercise (ages 18-28)	.045 (.030)	.083	.051 (.030) [†]	.094	.044 (.030)	.082	.045 (.021)*	.084	.048 (.021)*	.089	.045 (.021)*	.084			
Alcoholic drinks (ages 18-28)	.042 (.044)	.052	.041 (.045)	.051	.036 (.045)	.045	.027 (.041)	.040	.033 (.042)	.047	.027 (.041)	.040			
Cigarette use (ages 18-28)	.009 (.033)	.015	.012 (.033)	.020	.007 (.033)	.012	.009 (.041)	.017	.012 (.040)	.022	.009 (.042)	.018			
Constant	2.806 (.358)**		2.901 (.355)**		2.775 (.360)**		2.678 (.377)**		2.650 (.413)**		2.655 (.403)**				
R-squared	.068		.061		.070		.075		.068		.075				

Note. Unstandardized (b) and standardized (β) coefficients shown with standard errors in parentheses; the standard error of racial segregation is adjusted for clustered at county-level (n = 52). N = 409.

 $^{\dagger} p \leq .10. ^{*} p \leq .05. ^{**} p \leq .01$ (two-tailed tests).

When effects are combined, we see that juvenile discrimination/segregation is significantly correlated with adult inflammation (supporting the PAR model)

Juvenile discrimination/segregation impacts risk of adult inflammation:

Table 3

Regression Coefficients and Standard Errors for Racial Discrimination and Racial Segregation Regressed on Inflammation

			Racial discrimi	nation			Racial resident segregation							
	Model 14	A	Model 1E	}	Model 1	С	Model 24	A	Model 2	3	Model 20	C		
Predictors and controls	b	β	b	β	b	β	b	β	b	β	b	β		
Juvenile racial discrimination Adult racial discrimination	.020 (.007)**	.154	.016 (.007)*	.130	.016 (.008)* .008 (.008)	.121 .064								
Juvenile racial segregation							.798 (.270)**	.182			.696 (.291)*	.154		
Adult racial segregation									.800 (.367)*	.162	.136 (.439)	.032		
Males	−.158 (.090) [↑]	099	198 (.091)*	124	−.175 (.091) [†]	109	−.118 (.068) [†]	081	137 (.066)*	092	−.119 (.067) [†]	082		
Acute illness	.005 (.006)	.043	.004 (.007)	.035	.004 (.007)	.033	.005 (.003)	.037	.006 (.003) [†]	.039	.005 (.003)	.036		
Education (age 28)	001 (.024)	001	003 (.024)	007	001 (.024)	003	009 (.018)	021	008 (.019)	021	009 (.018)	022		
Income (age 28)	.001 (.001)	.035	.001 (.001)	.028	.001 (.001)	.034	.001 (.001)	.048	.001 (.001)	.043	.001 (.001)	.048		
Married or cohabiting (age 28)	.124 (.088)	.070	.111 (.088)	.063	.120 (.088)	.068	.083 (.072)	.050	.086 (.071)	.051	.082 (.072)	.049		
Health insurance (age 28)	.076 (.103)	.037	.076 (.103)	.037	.080 (.103)	.039	.038 (.116)	.027	.033 (.115)	.025	.037 (.116)	.027		
Healthy diet (ages 18-28)	.014 (.025)	.029	.020 (.025)	.043	.014 (.025)	.030	.029 (.016) [†]	.062	.029 (.016) [†]	.062	.029 (.016) [†]	.063		
Exercise (ages 18-28)	.045 (.030)	.083	.051 (.030) [†]	.094	.044 (.030)	.082	.045 (.021)*	.084	.048 (.021)*	.089	.045 (.021)*	.084		
Alcoholic drinks (ages 18-28)	.042 (.044)	.052	.041 (.045)	.051	.036 (.045)	.045	.027 (.041)	.040	.033 (.042)	.047	.027 (.041)	.040		
Cigarette use (ages 18-28)	.009 (.033)	.015	.012 (.033)	.020	.007 (.033)	.012	.009 (.041)	.017	.012 (.040)	.022	.009 (.042)	.018		
Constant	2.806 (.358)**		2.901 (.355)**		2.775 (.360)**	1	2.678 (.377)**		2.650 (.413)**		2.655 (.403)**			
R-squared	.068		.061		.070		.075		.068		.075			

Note. Unstandardized (b) and standardized (β) coefficients shown with standard errors in parentheses; the standard error of racial segregation is adjusted for clustered at county-level (n = 52). N = 409.

 $^{\dagger} p \leq .10. ^{*} p \leq .05. ^{**} p \leq .01$ (two-tailed tests).

When effects are combined, we see that juvenile discrimination/segregation is significantly correlated with adult inflammation (supporting the PAR model)

Table 4

Regression Coefficients and Standard Errors for Composite Racism Regressed on Inflammation

	Model 3.	A	Model 3	В	Model 3	С	Model 3D		
Predictors and controls	b	β	b	β	b	β	b	β	
Juvenile composite racism	.217** (.052)	.223			.177* (.076)	.181	.168* (.078)	.172	
Adult composite racism			.197** (.053)	.200	.078 (.078)	.080	.069 (.080)	.070	
Males	129 (.089)	080	$180^{*}(.089)$	112	107 (.081)	067	142 (.091)	088	
Acute illness	.003 (.006)	.022	.002 (.007)	.014	.003 (.006)	.029	.002 (.007)	.014	
Education (age 28)	007 (.024)	015	010 (.024)	022			008 (.024)	019	
Income (age 28)	.001 (.001)	.049	.001 (.001)	.039			.001 (.001)	.048	
Married or cohabiting (age 28)	.104 (.087)	.058	.094 (.087)	.053			.099 (.087)	.056	
Health insurance (age 28)	.070 (.102)	.034	.067 (.102)	.033			.070 (.102)	.034	
Healthy diet (ages 18-28)	.020 (.025)	.042	.025 (.025)	.053			.021 (.025)	.045	
Exercise (ages 18-28)	.036 (.030)	.067	.043 (.030)	.079			.036 (.030)	.066	
Alcoholic drinks (ages 18-28)	.022 (.044)	.028	.023 (.045)	.029			.018 (.045)	.022	
Cigarette use (ages 18-28)	.002 (.033)	.003	.006 (.033)	.010			.001 (.033)	.002	
Constant	3.392** (.350)		3.393** (.354)		3.760** (.064)		3.430** (.353)		
R-squared	.087		.078		.074		.089		

Note. Unstandardized (b) and standardized (β) coefficients shown with robust standard errors in parentheses. N = 409.

* $p \leq .05$. ** $p \leq .01$ (two-tailed tests).

Table 4

Regression Coefficients and Standard Errors for Composite Racism Regressed on Inflammation

	Model 3/	A	Model 31	В	Model 30	C	Model 3I)
Predictors and controls	b	β	b	β	b	β	b	β
Juvenile composite racism	.217** (.052)	.223			.177* (.076)	.181	.168* (.078)	.172
Adult composite racism			.197** (.053)	.200	.078 (.078)	.080	.069 (.080)	.070
Males	129(.089)	080	$180^{+}(.089)$	112	107 (.081)	067	142 (.091)	088
Acute illness	.003 (.006)	.022	.002 (.007)	.014	.003 (.006)	.029	.002 (.007)	.014
Education (age 28)	007 (.024)	015	010 (.024)	022			008 (.024)	019
Income (age 28)	.001 (.001)	.049	.001 (.001)	.039			.001 (.001)	.048
Married or cohabiting (age 28)	.104 (.087)	.058	.094 (.087)	.053			.099 (.087)	.056
Health insurance (age 28)	.070 (.102)	.034	.067 (.102)	.033			.070 (.102)	.034
Healthy diet (ages 18-28)	.020 (.025)	.042	.025 (.025)	.053			.021 (.025)	.045
Exercise (ages 18-28)	.036 (.030)	.067	.043 (.030)	.079			.036 (.030)	.066
Alcoholic drinks (ages 18-28)	.022 (.044)	.028	.023 (.045)	.029			.018 (.045)	.022
Cigarette use (ages 18-28)	.002 (.033)	.003	.006 (.033)	.010			.001 (.033)	.002
Constant	3.392** (.350)		3.393** (.354)		3.760** (.064)		3.430** (.353)	
R-squared	.087		.078		.074		.089	

Note. Unstandardized (b) and standardized (β) coefficients shown with robust standard errors in parentheses. N = 409.

* $p \le .05$. ** $p \le .01$ (two-tailed tests).

When segregation and discrimination are combined to define "racism", similar effects are still observed (even after controlling for SES variables)

Composite juvenile racism increases risk of adult inflammation:

----- High levels of juvenile composite racism ages 10-15 (b = .076, β = .137, p = .026) Low levels of juvenile composite racism ages 10-15 (b = .014, β = .027, p = .728)

DISCUSSION

- Framing health inequality: after reading through this paper, how do you think we can better address "health disparities"?
 - How can we include racial inequality into future conversation and analysis?
- What would we expect to see if this study continued beyond late 20s?
- Let's consider the potential compounding effect of being Black and transgender or Black and a woman, what additional experiences/exposures might impact their health risks?